What is the derivative of #7^x#?

1 Answer
Mar 9, 2018

#color(red)(d/(dx)(a^x)=a^x*lna#
#:.y=7^x=>y^'=7^x*ln7#

Explanation:

We know that
#color(blue)(f^'(x)=lim_(t to x)(f(t)-f(x))/(t-x))#,where #f(x)=7^x#
#=lim_(t to x)(7^t-7^x)/(t-x)#
#=7^xlim_(t to x)(7^(t-x)-1)/(t-x)#,
Take, #(t-x)=h#, then, #t to x=>h to0#
#f^'(x)=7^xlim_(h to 0)(7^h-1)/h#,and, #color(red)(lim_(h to 0)(a^h-1)/h=lna#
#f^'(x)=7^x*ln7#