What is the derivative of #arctan sqrt [ (1-x)/(1+x)]#?
1 Answer
I got:
#-(1)/(2sqrt(1-x^2))#
The derivative of
So since
#d/(dx)(arctansqrt((1-x)/(1+x)))#
# = 1/(1+(1-x)/(1+x))*(1/(2sqrt((1-x)/(1+x))))*[((1+x)*(-1) - (1-x)*(1))/(1+x)^2]#
You can see there are multiple chain rules here.
# = [(-1cancel(-x)-1cancel(+x))/(1+x)^2][1/(2sqrt((1-x)/(1+x))(1+(1-x)/(1+x)))]#
Multiply in the
# = [(-cancel(2))/(1+x)^2][1/(cancel(2)(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))]#
Merge the fractions:
# = -(1)/((1+x)^"4/2"(sqrt((1-x)/(1+x))+((1-x)/(1+x))^"3/2"))#
Multiply in the
# = -(1)/(sqrt(1-x)*(1+x)^"3/2"+(1-x)^"3/2"*sqrt(1+x)#
Simplify by turning
# = -(1)/((1-x)^"1/2"(1+x)^"1/2"(1+x)+(1-x)(1-x)^"1/2"(1+x)^"1/2"#
Factor out the
# = -(1)/(sqrt(1-x^2)*(1+x)+(1-x)*sqrt(1-x^2))#
# = -(1)/(sqrt(1-x^2)(1cancel(+x)+1cancel(-x)))#
# = color(blue)(-(1)/(2sqrt(1-x^2)))#
Wolfram Alpha gives the derivative as (assuming
# = -(1)/(2sqrt(1-x^2))# ,
and in general, gives
#sqrt((1-x)/(1+x))/(2(1-x))# .