What is the derivative of #f(x) = (1+lnx)/(1-lnx)#?

1 Answer
Oct 31, 2015

#f'(x) = 2/(x(1-ln x)^2)#

Explanation:

Let #t = ln x#

Then #d/dx f(x) = dt/dx d/dt (1+t)/(1-t)#

#d/dt ((1+t)/(1-t)) = 1/(1-t) + (1+t)/(1-t)^2#

#= ((1-t) + (1+t))/(1-t)^2 = 2/(1-t)^2#

Now #dt/dx = d/(dx) ln x = 1/x#

So #d/dx f(x) = 1/x 2/(1-ln x)^2 = 2/(x(1-ln x)^2)#