What is the derivative of #f(x) = cos(ix)+sin(ix)#?

1 Answer
Apr 20, 2016

#f'(x)=i(cos(ix)-sin(ix)) = sinh(x)+icosh(x)#

Explanation:

We will use the following:

  • The sum rule

  • The chain rule

  • #d/dx cos(x) = -sin(x)#

  • #d/dx sin(x) = cos(x)#

  • #d/dx ax = a# for #a in CC#

#f'(x) = d/dx(cos(ix)+sin(ix))#

#=d/dxcos(ix) + d/dxsin(ix)#

#=-sin(ix)(d/dxix) + cos(ix)(d/dxix)#

#=-sin(ix)(i) + cos(ix)(i)#

#=i(cos(ix)-sin(ix))#


We could also go about this by using hyperbolic trig functions and the following:

  • #-isin(ix) = sinh(x)#
  • #cos(ix) = cosh(x)#
  • # d/dx sinh(x) = cosh(x)#
  • #d/dx cosh(x) = sinh(x)#

Then:

#d/dx(cos(ix)+sin(ix)) = d/dx(cosh(x) + isinh(x))#

#=d/dxcosh(x)+d/dxisinh(x)#

#=sinh(x)+icosh(x)#

Note that substituting the standard trig functions back in gives the same result as obtained above.