What is the derivative of #f(x)=coshx#?

1 Answer
Jan 20, 2016

#\frac{d}{dx}(cosh(x))=sinh(x)#

Explanation:

Given #cosh(x)=\frac{e^x+e^(-x)}{2}#
Differentiating the right hand side of the equation with respect to #x#
#\frac{d}{dx}(e^x)+\frac{d}{dx}(e^{-x})=e^x-e^{-x}#
So we have #\frac{d}{dx}(cosh(x))=\frac{e^x-e^{-x}}{2}=sinh(x)#
So, that means the derivative of #cosh(x)# is #sinh(x)#