What is the derivative of # f(x)=cosx/(1+sin^2x)#?

1 Answer
Oct 28, 2015

#(dy/dx) =- (sin{x})/(1+sin^2{x}) - (2cos^2{x}sin{x})/(1+sin^2{x})^2 #

Explanation:

Standard form reference: if #y=u/v# then #(dy)/dx =(v((du)/dx)-u((dv)/dx))/v^2#

Considering section at a time

Let #u=cos(x) -> (du)/dx= -sin(x)#
Let #v=1 +sin^2(x) -> (dv)/dx = 2sin(x)cos(x)#

Thus #" " (dy)/dx= (( 1+sin^2{x})(-sin{x}) - (cos{x})( 2sin{x}cos{x} ))/((1+sin^2{x})^2#

from which you derive

#(dy/dx) =- (sin{x})/(1+sin^2{x}) - (2cos^2{x}sin{x})/(1+sin^2{x})^2 #