What is the derivative of # f(x)=cosx/(1+sinx)#?

1 Answer
Jan 12, 2016

#f'(x) = -1/(1+sinx)#

Explanation:

Use the quotient rule to get the derivative. The quotient rule says that if #f(x) = g(x)/(h(x))# the derivative #f'(x) = (g'(x)h(x) - g(x)h'(x))/(h^2(x))#
In this case #g(x) = cosx# and #h(x) = (1+sinx)#
#g'(x) =-sinx#
#h'(x) = cosx#
#f'(x) = (-sinx(1+sinx) - cosx*cosx)/(1+sinx)^2#
#f'(x) = (-sinx-sin^2x -cos^2x)/(1+sinx)^2#
#f'(x) =-(sinx+sin^2x +cos^2x)/(1+sinx)^2#
We know that #sin^2x +cos^2x = 1# so the expression becomes
#f'(x) = -(sinx+1)/(1 + sinx)^2#
#f'(x) = -1/(1+sinx)#