What is the derivative of #f(x) = (x^3-x^2)/(lnx^2+lnx)#?

1 Answer

the first derivative

#f' (x)=((3x^2-2x) lnx^3 -3x^2 +3x)/(ln x^3)^2#

Explanation:

from the given

#f(x) = (x^3 -x^2)/(ln x^2 + ln x)=(x^3 -x^2)/(ln x^3)#

#f' (x)=((ln x^3)(3x^2-2x)-(x^3-x^2)(3x^2/x^3))/(ln x^3)^2#

which simplifies to

#f' (x)=((3x^2-2x) lnx^3 -3x^2 +3x)/(ln x^3)^2#