What is the derivative of sin2(x) by first principle? Please note I know the chain rule (and can pretty much get the correct answer through that)
1 Answer
I assume that this is intended to be
Explanation:
I suggest reviewing the differentiation of
Let
Then
#= lim_(hrarr0)(sin^2(x+h)-sin^2x) /h#
#= lim_(hrarr0)((sin(x+h))^2-sin^2x) /h#
#= lim_(hrarr0)((sinxcos h+cosxsin h)^2-sin^2x) /h#
#= lim_(hrarr0)(sin^2xcos^2h+2sinxcosxsin hcos h+cos^2xsin^2h-sin^2x) /h#
#= lim_(hrarr0)(sin^2xcos^2h-sin^2x+2sinxcosxsin hcos h+cos^2xsin^2h) /h#
#= lim_(hrarr0)[(sin^2xcos^2h-sin^2x)/h+(2sinxcosxsin hcos h)/h+(cos^2xsin^2h) /h]#
#= lim_(hrarr0)[(sin^2x(cos^2h-1))/h+(2sinxcosxsin hcos h)/h+(cos^2xsin^2h) /h]#
#= lim_(hrarr0)[sin^2x(cos h-1)/h (cos h +1)+2sinxcosxsin h/hcos h+cos^2xsin h /h sin h]#
Now use
# = 2sinx cosx#