What is the derivative of #(tan^-1 (x+2)/(1+2x))#? Calculus Differentiating Trigonometric Functions Differentiating Inverse Trigonometric Functions 1 Answer Harish Chandra Rajpoot Jul 18, 2018 #dy/dx=frac{1}{(1+2x)(x^2+4x+5)}-2/{(1+2x)^2} \tan^{-1}(x+2)# Explanation: Given function: #y=\frac{\tan^{-1}(x+2)}{1+2x}# differentiating w.r.t. #x# using product rule as follows #dy/dx=\frac{d}{dx}(\frac{\tan^{-1}(x+2)}{1+2x})# #=\frac{(1+2x)d/dx\tan^{-1}(x+2)-\tan^{-1}(x+2)d/dx(1+2x)}{(1+2x)^2}# #=\frac{(1+2x)\frac{1}{1+(x+2)^2}-\tan^{-1}(x+2)(2)}{(1+2x)^2}# #=frac{1}{(1+2x)(x^2+4x+5)}-2/{(1+2x)^2} \tan^{-1}(x+2)# Answer link Related questions What is the derivative of #f(x)=sin^-1(x)# ? What is the derivative of #f(x)=cos^-1(x)# ? What is the derivative of #f(x)=tan^-1(x)# ? What is the derivative of #f(x)=sec^-1(x)# ? What is the derivative of #f(x)=csc^-1(x)# ? What is the derivative of #f(x)=cot^-1(x)# ? What is the derivative of #f(x)=(cos^-1(x))/x# ? What is the derivative of #f(x)=tan^-1(e^x)# ? What is the derivative of #f(x)=cos^-1(x^3)# ? What is the derivative of #f(x)=ln(sin^-1(x))# ? See all questions in Differentiating Inverse Trigonometric Functions Impact of this question 3092 views around the world You can reuse this answer Creative Commons License