What is the derivative of # tan(4x)^tan(5x)#?
1 Answer
Apr 24, 2016
We have the function
#y=tan(4x)^tan(5x)#
Take the natural logarithm of both sides:
#ln(y)=ln(tan(4x)^tan(5x))#
Using the rule
#ln(y)=tan(5x)*ln(tan(4x))#
Differentiate both sides. The chain rule will be in effect on the left hand side, and primarily we will use the product rule on the right hand side.
#dy/dx(1/y)=ln(tan(4x))d/dxtan(5x)+tan(5x)d/dxln(tan(4x))#
Differentiate each, again using the chain rule.
#dy/dx(1/y)=5sec^2(5x)ln(tan(4x))+tan(5x)((4sec^2(4x))/tan(4x))#
Multiply this all by
#dy/dx=tan(4x)^tan(5x)(5sec^2(5x)ln(tan(4x))+(4sec^2(4x)tan(5x))/tan(4x))#