What is the derivative of the following function? f(x)=ln(sqrt(x^sin(x)))

f(x)=ln(sqrt(x^sin(x)))

1 Answer
Mar 18, 2018

#f^(')(x) =(cos(x)ln(x)+sin(x)/x)/2 #

Explanation:

The function given is:

#=>f(x) = ln(sqrt(x^(sin(x))))#

Let's first simplify #sqrt(x^sin(x))#.

Using the law: #u(x) = e^ln(u(x)) " and " ln(a^b) =bln(a) # we get:

#=>sqrt(x^sin(x))= sqrt(e^(sin(x)*ln(x))) #

Also: #sqrt(x) =x^(1/2)#, so:

#=>sqrt(e^(sin(x)*ln(x)))= color(blue)(e^((sin(x)*ln(x)) /2))#

Let's go back to our function now! We have now:

#=>f(x) =ln(color(blue)(e^((sin(x)*ln(x))/2))) =(sin(x)*ln(x))/2#

And now the product rule:

#=>f(x) =u*v <=> f'(x) =u'*v+u*v'#

Applying the product rule to our function:

#=>color(green)(f^(')(x) =(cos(x)ln(x)+sin(x)/x)/2)#

A slightly nicer equivalent form:

#=>f^(')(x) = (xcos(x)ln(x) +sin(x))/(2x)#