What is the derivative of this function #y=csc^-1(e^x)#?

1 Answer
Mar 18, 2018

The answer is #=-e^-x/sqrt(1-e^(-2x))#

Explanation:

The function is

#y=arc csc(e^x)#

Therefore,

#cscy=e^x#

Differentiating wrt #x#

#(1/siny)'dy/dx=e^x#

#(-1/sin^2y*cosy)dy/dx=e^x#

#dy/dx=-tany*siny*e^x#

#siny=1/e^x#

#tany=siny/cosy=(e^(-x)/sqrt(1-e^(-2x)))#

Therefore,

#dy/dx=-(e^(-x)/sqrt(1-e^(-2x)))*1/e^x*e^x#

#=-e^-x/sqrt(1-e^(-2x))#