What is the difference quotient #"f(x + h) - f(x)"/h#, where #h# is not equal to 0, of #f(x) = -4x^2 - 2x + 4#?

1 Answer
Nov 24, 2015

#-8x-4h-2#

Explanation:

Notice that the numerator contains the term #f(x+h)#. To find this, take #f(x)#, and plug in #x+h# wherever you see an #x#.

#f(x+h)=-4(x+h)^2-2(x+h)+4#

#f(x+h)=-4(x^2+2xh+h^2)-2x-2h+4#

#f(x+h)=-4x^2-8xh-4h^2-2x-2h+4#

Let's plug this back into the difference quotient with everything else.

#(stackrel"f(x+h)"overbrace(-4x^2-8xh-4h^2-2x-2h+4)-stackrel"f(x)"overbrace((-4x^2-2x+4)))/h#

#(cancel(-4x^2+4x^2)-8xh-4h^2cancel(-2x+2x)-2hcancel(+4-4))/h#

#(-8xh-4h^2-2h)/h#

#color(blue)(-8x-4h-2#