What is the domain of #(g @f)(x)# where #f(x)=(x-1)/(2-x)# and #g(x) = sqrt(x+2)#?

1 Answer
Dec 29, 2016

The domain is #x in ] -oo,2 [ uu [ 3, +oo[ #

Explanation:

#f(x)=(x-1)/(2-x)#

#g(x)=sqrt(x+2)#

#(gof)(x)=g(f(x))#

#=g((x-1)/(2-x))#

#=sqrt((x-1)/(2-x)+2)#

#=sqrt(((x-1)+2(2-x))/(2-x))#

#=sqrt((x-1+4-2x)/(2-x))#

#=sqrt((3-x)/(2-x))#

Therefore,

#(3-x)/(2-x)>=0# and #x!=0#

To solve this inequality, we do a sign chart

#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaaa)##2##color(white)(aaaaaaa)##3##color(white)(aaaaaa)##+oo#

#color(white)(aaaa)##2-x##color(white)(aaaaa)##+##color(white)(aaa)##∥##color(white)(aaa)##-##color(white)(aaaaa)##-#

#color(white)(aaaa)##3-x##color(white)(aaaaa)##+##color(white)(aaa)##∥##color(white)(aaa)##+##color(white)(aaaaa)##-#

#color(white)(aaaa)##g(f(x))##color(white)(aaaa)##+##color(white)(aaa)##∥##color(white)(aaa)##O/##color(white)(aaaaaa)##+#

Therefore,

#g(f(x)>=0)#, when #x in ] -oo,2 [ uu [ 3, +oo[ #

The domain is #D_g(f(x))# is #x in ] -oo,2 [ uu [ 3, +oo[ #