What is the equation of the line normal to #f(x)=(2x^2 + 1) / x# at #x=-2#?

1 Answer
Mar 19, 2017

#y = -4/7x -79/14#

Explanation:

slope function #= f'(x)#

Find the derivative:
Use the Quotient Rule #(u/v)' = (vu' - uv')/v^2#

Let #u = 2x^2 + 1#, #u' = 4x#
Let #v = x#, #v' = 1#

#f'(x) = (x*4x - (2x^2+1)(1))/x^2 = (4x^2 - 2x^2 - 1)/x^2 = (2x^2 - 1)/x^2#

Find the tangent and normal slopes:
Tangent Slope, #m = f'(-2) = (2(-2)^2-1)/(-2)^2 = 7/4#

Normal slope, #-1/m = -4/7#

Find normal equation:
1. Find the point: #f(-2) = (2(-2)^2 + 1)/-2 = -9/2#
2. Use #y - y_1 = m(x-x_1)#: #y - (-9/2) = -4/7(x - (-2))#
3. Simplify: #y +9/2 = -4/7x -8/7#;
4. write in #y#-intercept form: #y = -4/7x -79/14#