What is the equation of the line normal to #f(x)=9x^2 +2x - 4 # at #x=-1#?

1 Answer
Jun 30, 2016

#y=+1/16x+49/16#

Explanation:

Let the given point be #P_1->(x_1,y_1)=(-1,y_1)#

Differentiating each term of #f(x)#

#9x^2->2xx9x^(2-1)=18x#

#2x->2#

#-4->0#

So #(dy)/(dx)->f^'(x) = 18x+2#

#=>f^'(-1) = 18(-1)+2 = -16#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gradient of the line normal to #f(x)" is "(-1)xx1/(-16)# giving:

#" "color(blue)(y=+1/16x+c)# ................................Eqn(1)

This line passes through the point #(x,y)->(-1,y_1)#

Substitute #x_1=-1# into #f(x)->f(-1)" " ->" "y_1= 9(-1)^2+2(-1)-4#

#y_1=9-2-4=+3#

Thus #P_1->(x_1,y_1)=(-1,3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So Eqn(1)# ->P_1->(x_1,y_1)->y_1=1/16x_1+c" "# becomes

#=>P_1->(x_1,y_1)->3=1/16(-1)+c#

Thus #c=+3 1/16 -> 49/16#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The equation of the line is:

#y=+1/16x+49/16#

Tony B