What is the equation of the line normal to # f(x)=cos(5x+pi/4)# at # x=pi/3#?

1 Answer

#color(red)(y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)#

Explanation:

Given #f(x)=cos (5x+pi/4)# at #x_1=pi/3#

Solve for the point #(x_1, y_1)#

#f(pi/3)=cos((5*pi)/3+pi/4)=(sqrt2+sqrt6)/4#

point #(x_1, y_1)=(pi/3, (sqrt2+sqrt6)/4)#

Solve for the slope m

#f' (x)=-5*sin (5x+pi/4)#

#m=-5*sin ((5pi)/3+pi/4)#

#m=(-5(sqrt2-sqrt6))/4#

for the normal line #m_n#

#m_n=-1/m=-1/((-5(sqrt2-sqrt6))/4)=4/(5(sqrt2-sqrt6))#
#m_n=-(sqrt2+sqrt6)/5#

Solve the normal line

#y-y_1=m_n(x-x_1)#

#color(red)(y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)#

Kindly see the graph of #y=cos (5x+pi/4)# and the normal line #y-((sqrt2+sqrt6))/4=-((sqrt2+sqrt6))/5*(x-pi/3)#

graph{(y-cos (5x+pi/4))(y-((sqrt2+sqrt6))/4+((sqrt2+sqrt6))/5*(x-pi/3))=0[-5,5,-2.5,2.5]}

God bless....I hope the explanation is useful.