What is the equation of the line normal to #f(x)= x^2sin^2(2x) # at #x=pi/6#?

1 Answer
Sep 29, 2016

#y - pi^2/48 = -36/(sqrt3pi^2 + 9pi)(x - pi/6)#

Explanation:

Let's begin by finding the y coordinate corresponding to the given x coordinate:

#y = ((pi)/6)^2sin^2(2(pi)/6)#

#y = (pi^2/36)(3/4) = pi^2/48#

The slope, n, of the normal line is:

#n = -1/m# where m is the slope of the tangent line.

To obtain the slope of the tangent line, we must compute the first derivative:

#f'(x) = 2xSin(2 x) (2xCos(2 x) + Sin(2 x))#

Evaluate at #x = pi/6#:

#m = f'(pi/6) = 2(pi/6)Sin(2 pi/6) (2(pi/6)Cos(2 pi/6) + Sin(2 pi/6))#

#m = 2(pi/6)(sqrt3/2) ((pi/6)+ sqrt3/2)#

#m = sqrt3(pi/6) ((pi/6)+ sqrt3/2)#

#m = sqrt3(pi/6)^2+ pi/4#

#m = (sqrt3pi^2 + 9pi)/36#

#n = -36/(sqrt3pi^2 + 9pi)#

Using the point-slope form of the equation of a line:

#y - y_1 = n(x - x_1)#

#y - pi^2/48 = -36/(sqrt3pi^2 + 9pi)(x - pi/6)#