What is the equation of the line normal to # f(x)=x^2sinx# at # x=pi/3#?

1 Answer
Jul 10, 2018

#y=-18/(6*sqrt(3)*pi+pi^2)*x+pi^2/(6*sqrt(3))+6/(6*sqrt(3)+pi)#

Explanation:

We have given

#f(x)=x^2sin(x)#
then we get by the product rule

#(uv)'=u'v+uv'#
#f'(x)=2xsin(x)+x^2cos(x)#

#f'(pi/3)=2*pi/3*sin(pi/3)+(pi/3)^2cos(pi/3)#
#f'(pi/3)=pi/sqrt(3)+pi^2/18#
Note that #sin(pi/3)=sqrt(3)/2,cos(pi/3)=1/2#

so the slope of the normal line is given by

#m=-18/(6*sqrt(3)*pi+pi^2)#
We have
#f(pi/3)=pi^2/(6*sqrt(3))#
the searched equation hase the form

#y=mx+n#
We know #m# and #n# is given by

#pi^2/(6*sqrt(3))+6/(6*sqrt(3)+pi)=n#