What is the equation of the line tangent to #f(x)=(2x^3 - 4) / x# at #x=-4#?

1 Answer
May 27, 2018

#y=-63/4(x+4)-33#

Explanation:

  1. Find the derivative of f(x):
    Using the quotient rule...
    #f'(x)=((x)(6x^2)-(2x^3-4)(1))/x^2#
    Simplifying that...
    #f'(x)=(4x^3+4)/x^2#

  2. Plug #x=-4# into your #f'(x)# equation:
    #f'(-4)=(4(-4)^3+4)/(-4)^2=-63/4#
    This is the slope of the tangent line.

  3. Find your #y# coordinate by plugging #x=-4# into your original equation:
    #f(-4)=(2(-4)^3-4)/(-4)=33#

  4. Using #x=-4#, #y=33#, and #f'(-4)=-63/4#, form your tangent line equation:
    #y=-63/4(x+4)-33#