What is the equation of the line tangent to #f(x)=(2x^3 - 4) / x# at #x=-4#?
1 Answer
May 27, 2018
Explanation:
-
Find the derivative of f(x):
Using the quotient rule...
#f'(x)=((x)(6x^2)-(2x^3-4)(1))/x^2#
Simplifying that...
#f'(x)=(4x^3+4)/x^2# -
Plug
#x=-4# into your#f'(x)# equation:
#f'(-4)=(4(-4)^3+4)/(-4)^2=-63/4#
This is the slope of the tangent line. -
Find your
#y# coordinate by plugging#x=-4# into your original equation:
#f(-4)=(2(-4)^3-4)/(-4)=33# -
Using
#x=-4# ,#y=33# , and#f'(-4)=-63/4# , form your tangent line equation:
#y=-63/4(x+4)-33#