What is the equation of the line tangent to # f(x)=2x-secx # at # x=pi/4#?
1 Answer
Explanation:
First of all, find the point the tangent line will intersect:
#f(pi/4)=(2pi)/4-sec(pi/4)=pi/2-sqrt2#
The tangent line passes through
The part that requires calculus is finding the slope of the tangent line at
Differentiating the function:
#f'(x)=d/dx(2x)-d/dx(secx)#
The derivative of
To find the derivative of
#d/dx(cosx)^-1=-(cosx)^-2d/dx(cosx)=(-1)/cos^2x(-sinx)#
#=1/cosx*sinx/cosx=secxtanx#
Putting this together,
#f'(x)=2-secxtanx#
And the slope of the tangent line is
#f'(pi/4)=2-sec(pi/4)tan(pi/4)=2-sqrt2(1)=2-sqrt2# .
Putting the point
#y-y_1=m(x-x_1)#
#y-pi/2+sqrt2=(2-sqrt2)(x-pi/4)#