Our #x#-value = #pi/4#
To find our gradient we differentiate:
#y=f(x)g(x)# then #dy/dx=f(x)g'(x)+f'(x)g(x)#
#f(x)=x^2#
#f'(x)=2x#
#g(x)=sin(2x)#
#g'(x)=2cos(2x)#
#dy/dx=2xsin(2x)+2x^2cos(2x)#
#x=pi/4#
#dy/dx=(pi/2)sin(pi/2)+2(pi/4)^2cos(pi/2)#
#=pi/2#
#y=(pix)/2+c#
To find #y# we put #x# back into the original equation to get #y=(pi/4)^2sin(pi/2)=pi^2/16#
So, #pi^2/16=(pix)/2+c#
We put in our value for #x# and rearrange:
#pi^2/16=(pix)/2+c#
#pi^2/16=(pi(pi/4))/2+c#
#c=pi^2/16-(pi(pi/4))/2=pi^2/16-pi^2/8=-pi^2/16#
#y=(pix)/2-pi^2/16#