# What is the equation of the normal line of #f(x)= x^3/(3x^2-2x)+6x# at #x = 2#?

##### 1 Answer

#### Explanation:

The **normal line** is the line that is perpendicular to the line tangent to the function at a particular point. Imagine that you are skiing down a mountain. The mountain is your function, with its various hills and valleys. Your skis represent the slope of the mountain where you are; the skis represent the slope of the line tangent to your position along the mountain. You, while standing perpendicular to your skis, represent the slope of the normal line.

To find the slope of the normal line, we must first find the slope of the tangent line. For a function

We have

We could simplify further if desired, but at this point we can plug in our value of

Thus, the slope of

To find our equation, we need more than just a slope, we also need a point. We are interested in the normal line passing through

With a point and a slope, we can generate the equation of our normal line using *slope-intercept* form.

So our equation is