What is the equation of the normal line of #f(x)=x^3-4x^2+7x# at #x=-2#?

1 Answer

#y=-1/35x-1332/35#

Explanation:

From the given equation
#f(x)=x^3-4x^2+7x# at the given abscissa #x=-2#

We need the negative reciprocal of slope m and the point

Solve for the slope m
#m=f' (-2)#

#f' (x)=d/dx(x^3-4x^2+7x)#

#f' (x)=3x^2-8x+7#

#m=f' (-2)=3(-2)^2-8(-2)+7#

#m=f' (-2)=#3(4)+16+7#

#m=f' (-2)=35#

Solve for #f(-2)#

#f(x)=x^3-4x^2+7x#
#f(-2)=(-2)^3-4(-2)^2+7(-2)#

#f(-2)=-8-16-14#
#f(-2)=-38#

Our needed point #(x_1, y_1)=(-2, -38)#

Let us now solve for the normal line

#y-y_1=-1/m(x-x_1)#

#y--38=-1/35(x--2)#

#y+38=-1/35(x+2)#

#y=-1/35(x+2)-38

#y=-1/35x-2/35-38#

#y=-1/35x-1332/35#

Kindly see the graph of #f(x)=x^3-4x^2+7x# and the normal line
#y=-1/35x-1332/35#
graph{(y+1/35x+1332/35)(y-x^3+4x^2-7x)=0[-90,90,-45,45]}

God bless....I hope the explanation is useful.