What is the equation of the tangent line of #f(x) =(1-x^3)/(x^2-3x)# at #x=4#?

1 Answer
Sep 10, 2016

#y=(123/16)x-46#

Explanation:

The slope of the tangent line at x=4 is #f'(4)#
let us find #f'(x)#
#f(x)# is in the form #u/v# then
#f'(x)=(u'v-v'u)/v^2#
let #u=1-x^3# and #v=x^2-3x#
So,
#u'=-3x^2#
#v'=2x-3#
then
#f'(x)=(u'v-v'u)/v^2#
#f'(x)=(((-3x^2)(x^2-3x))-((2x-3)(1-x^3)))/(x^2-3x)^2#
#f'(x)=(-3x^4+9x^3-2x+2x^4+3-3x^3)/(x^2-3x)^2#
#f'(x)=(-x^4+6x^3-2x+3)/(x^2-3x)^2#

To find the slope of tangent line at x=4 we need to compute f'(4)
We evaluated f'(x) so lrt us substitute x by 4
#f'(4)=(-4^4+6*4^3-2*4+3)/(4^2-3*4)^2#
#f'(4)=(-256+384-8+3)/(16-12)^2#
#f'(4)=123/16#
The slope of this tangent is 123/16
Having #x=4# let us find #y#
#y=(1-4^3)/(4^2-3*4)#
#y=-63/4#
The equation of the tangent line is :
#y-(-63/4)=123/16(x-4)#
#y+63/4=(123/16)x-123*4/16#
#y+63/4=(123/16)x-123/4#
#y=(123/16)x-123/4-63/4#
#y=(123/16)x-(123+63)/4#
#y=(123/16)x-184/4#
#y=(123/16)x-46#