What is the equation of the tangent line of #f(x)=4secx–8cosx# at #x=(pi/3)#?

1 Answer
Jan 23, 2016

#y-4=12sqrt3(x-pi/3)#

Explanation:

Find the point the tangent line will intercept.

#f(pi/3)=4sec(pi/3)-8cos(pi/3)=4(2)-8(1/2)=4#

The tangent line will intercept the point #(pi/3,4)#.

In order to find the slope of the tangent line, we must find the derivative of the function. In order to do this, the two following trigonometric identities should be known:

  • #d/dx[secx]=secxtanx#
  • #d/dx[cosx]=-sinx#

The derivative is

#f(x)=4secx-8cosx#

#f'(x)=4secxtanx+8sinx#

The slope of the tangent line at #x=pi/3# can be found through evaluating #f'(pi/3)#.

#f'(pi/3)=4sec(pi/3)tan(pi/3)+8sin(pi/3)=4(2)(sqrt3)+8(sqrt3/2)=12sqrt3#

The tangent line will intercept the point #(pi/3,4)# and have a slope of #12sqrt3#.

These can be related in a linear equation in point-slope form, which uses a point #(x_1,y_1)# and slope #m#:

#y-y_1=m(x-x_1)#

Giving the equation of the tangent line

#y-4=12sqrt3(x-pi/3)#

Graphed are the original function and the tangent line (zoomed in):

graph{(4secx-8cosx-y)(y-4-12sqrt3(x-pi/3))=0 [-1.5, 2, -6, 15]}