What is the equation of the tangent line of #f(x)=e^(-x^2+x+pi)-sinx/e^x# at #x=pi/4#?

1 Answer
Jan 18, 2018

#y=(1-pi/2)e^((5pi)/4-(pi^2)/16)x-((-pi^2+2*pi-8)*e^((5*pi)/4-pi^2/16))/8-e^(-pi/4)/sqrt(2)#
#y~~-15.633526x+39.3451202#
#y~~-15.6x+39.3#

Explanation:

We nave #f(x)=e^(-x^2+x+pi)-sinx/e^x#

The equation of the tangent will be in the form of #y=mx+c#

First, we will find the gradient #m#:

#f(x)=e^(-x^2+x+pi)-sinx/e^x#

#f'(x)=d/dx[e^(-x^2+x+pi)-sinx/e^x]#

#color(white)(f'(x))=d/dx[e^(-x^2+x+pi)]-d/dx[sinx/e^x]#

#color(white)(f'(x))=d/dx[-x^2+x+pi]e^(-x^2+x+pi)-(e^xd/dx[sinx]-sinxd/dx[e^x])/(e^x)^2#

#color(white)(f'(x))=(-2x+1)e^(-x^2+x+pi)-(e^xcosx-sinxe^x)/(e^x)^2#

#color(white)(f'(x))=(-2x+1)e^(-x^2+x+pi)-(cosx-sinx)/e^x#

#f'(pi/4)=(-2(pi/4)+1)e^(-(pi/4)^2+(pi/4)+pi)-(cos(pi/4)-sin(pi/4))/e^(pi/4)#

#color(white)(f'(pi/4))=(1-pi/2)e^((5pi)/4-(pi^2)/16)#

Now for #x# and #y#

We know #x=pi/4#

Though #y=f(pi/4)=e^(-(pi/4)^2+(pi/4)+pi)-sin(pi/4)/e^(pi/4)=e^((5*pi)/4-pi^2/16)-e^(-pi/4)/sqrt(2)#

Finally, #c#:
#y=mx+c#

#c=y-mx#

#color(white)(c)=(e^((5*pi)/4-pi^2/16)-e^(-pi/4)/sqrt(2))-pi/4((1-pi/2)e^((5pi)/4-(pi^2)/16))#

#color(white)(c)-((-pi^2+2*pi-8)*e^((5*pi)/4-pi^2/16))/8-e^(-pi/4)/sqrt(2)#

Overall, #y=(1-pi/2)e^((5pi)/4-(pi^2)/16)x-((-pi^2+2*pi-8)*e^((5*pi)/4-pi^2/16))/8-e^(-pi/4)/sqrt(2)~~-15.633526x+39.3451202~~-15.6x+39.3#