What is the equation of the tangent line of #f(x) = (-x^2-x+3)/(2x-1)# at #x=1#?
1 Answer
Aug 19, 2017
Explanation:
#•color(white)(x)m_(color(red)"tangent")=f'(x)" at x = a"#
#"differentiate using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2#
#g(x)=-x^2-x+3rArrg'(x)=-2x-1#
#h(x)=2x-1rArrh'(x)=2#
#rArrf'(x)=((2x-1)(-2x-1)-2(-x^2-x+3))/(2x-1)^2#
#rArrf'(1)=(-3-2)/1=-5#
#rArrf(1)=1to(1,1)larr" tangent point"#
#rArry-1=-5(x-1)#
#rArry=-5x+6larr" equation of tangent"#