What is the equation of the tangent line of #f(x) =x^2ln(1/x)-x# at # x = 4#?

1 Answer
Oct 13, 2016

# y =(-5-8ln4)x+16+16ln4 #

Explanation:

We need to find the value of the gradient when #x=4# so we need to differentiate the expression (using the product rule):

So we need to know that # d/dx(uv) = (u)(d/dxv) + (d/dxu)(v) # and that # d/dx(lnx)=1/x #

So, # f(x)=x^2ln(1/x)-x #

# :. f(x)=x^2ln(x^-1)-x #
# :. f(x)=-x^2ln(x)-x #

Differentiating wrt #x# gives:
# f'(x)=(-x^2)(d/dxlnx)+d/dx(-x^2)(lnx)-1 #

#=(-x^2)(1/x)+(-2x)(lnx)-1 #
#=-x-2xlnx-1 #

So, when # x=4 => f(4)=-16ln4-4 #
And, # x=4 => f'(4) = -4-8ln4-1 = -5-8ln4 #

Thus, the tangent line has slope #m=-5-8ln4# and passes through #(4,-16ln4-4)#, so using #y-y_1=m(x-x_1)# the equation of the tangent is given by:

# y - (-16ln4-4)=(-5-8ln4)(x-4) #
#:. y +16ln4+4=(-5-8ln4)x-4(-5-8ln4) #
#:. y +16ln4+4=(-5-8ln4)x+20+32ln4 #
#:. y =(-5-8ln4)x+16+16ln4 #