What is the gravitational force between two identical 5000 kg asteroids whose centers are apart by 100 m?

1 Answer
Apr 13, 2016

#F=1.6675*10^-7N#

Explanation:

For this,you must know how to behave with Scientific Notations

Use the Newton's law of Gravitation formula

#color(brown)(F=G(m_1m_2)/(r^2)#

Here are the definition of the variables in the formula

#color(blue)("F"="Force of Gravity"#

#color(blue)("G"="Gravitational constant"=6.67*10^-11 N(m^2)/(kg^2)#

#color(blue)(m_1="Mass of the first object"="5000 kg"#

#color(blue)(m_2="Mass of second object=""5000 kg"#

#color(blue)(r="Distance between the centres of the objects"="100 m"#

We need to find #F#

Before entering the values, we must convert the mass and the distance values into scientific notation (in the form of exponents)

#color(violet)(m_1="5000 kg"=5*1000=5*10^3 # #color(violet)("kg"#

#color(violet)(m_2="5000 kg"=5*1000=5*10^3 # #color(violet)("kg"#

#color(violet)(r="100 m"=10^2# #color(violet)("m"#

Now, substitute the values in the formula

#rarrF=6.67*10^-11 N(m^2)/(kg^2)((5*10^3kg)(5*10^3kg))/((10^2m)^2)#

We have #(5*10^3kg)(5*10^3kg)=(5*10^3kg)^2#

#rarrF=6.67*10^-11 N(m^2)/(kg^2)((5*10^3kg)^2)/(10^4m^2)#

#rarrF=6.67*10^-11 N(m^2)/(kg^2)(5^2*10^6kg^2)/(10^4m^2)#

#rarrF=6.67*10^-11 N(m^2)/(kg^2)(25*10^6kg^2)/(10^4m^2)#

Now we start to cancel

#rarrF=6.67*10^-11 N(cancel(m^2))/(cancel(kg^2))(25*10^6cancel(kg^2))/(10^4cancel(m^2))#

#rarrF=6.67*10^-11N(25*10^6)/10^4#

#rarrF=(6.67*10^-11*25*10^6)/10^4N#

#rarrF=(166.75*10^-5)/10^4N#

Move #10^4# to the Numerator

Remember that,when positive exponents in the Denominator go to the Numerator,the become as Negative exponents

#rarrF=166.75*10^-5*10-4N#

#rarrF=166.75*10^-9#

#color(green)(rArrF=1.6675*10^-7#

If you need more guidance for the Newton's Gravitation formula

Watch