What is the improper integrals 1/(x^2-16) dx from 0 to 4 ? .

2 Answers
Jun 1, 2018

The integral diverges.
#color(blue)[int_0^4(1)/(x^2-16)*dx=lim_(brarr4)int_0^b(1)/(x^2-16)*dx=-1/4*lim_(brarr4)[ln|csctheta+cottheta|]_0^b#

Explanation:

show below:

#int_0^4(1)/(x^2-16)*dx=lim_(brarr4)int_0^b(1)/(x^2-16)*dx#

The integral in the top can be integrated using two ways but I will use one of them: trigonometric substitution.

Suppose:

#x=4*sectheta#

#dx=4*sectheta * tantheta* d theta#

#(x^2-16)= 16sec^2 theta - 16=16*(sec^2theta-1)=16*tan^2theta#

#lim_(brarr4)int_0^b(4*sectheta*tantheta*d(theta))/(16*tan^2theta)=#

#1/4*lim_(brarr4)int_0^b(sectheta*d(theta))/(tantheta)=#

#1/4*lim_(brarr4)int_0^b(1/(sintheta))=1/4*lim_(brarr4)int_0^bcsctheta*d(theta)#

#1/4*lim_(brarr4)int_0^bcsctheta*[(csctheta+cottheta)]/[(csctheta+cottheta)]*d(theta)#

#1/4*lim_(brarr4)int_0^b[(csc^2theta+csctheta*cottheta)]/[(csctheta+cottheta)]*d(theta)#

#-1/4*lim_(brarr4)[ln|csctheta+cottheta|]_0^b#

Jun 1, 2018

The integral diverges.

Explanation:

Perform the decomposition into partial fractions

#1/(x^2-16)=1/((x+4)(x-4))=A/(x+4)+B/(x-4)#

#=(A(x-4)+B(x+4))/((x+4)(x-4))#

The denominators are the same, compare the numerators

#1=A(x-4)+B(x+4)#

Let #x=-4#, #=>#, #1=-8A#, #=>#, #A=-1/8#

Let #x=4#, #=>#, #1=8B#, #=>#, #B=1/8#

Therefore,

#1/(x^2-16)=(-1/8)/(x+4)+(1/8)/(x-4)#

The indefinite integral is

#int(1dx)/(x^2-16)=int(-1/8dx)/(x+4)+int(1/8dx)/(x-4)#

#=-1/8ln(|x+4|)+1/8ln(|x-4|)+C#

Compute the boundaries :

#lim_(x->0^+)-1/8ln(|x+4|)+1/8ln(|x-4|)=0#

#lim_(x->4^-)-1/8ln(|x+4|)+1/8ln(|x-4|)=-oo#

Therefore,

#int_0^4(dx)/(x^2-16)= " diverges " #