What is the indefinite integral of #1/(xlnx)#?
1 Answer
May 30, 2016
Explanation:
We have the integral:
#int1/(xlnx)dx#
Use substitution. Let
#int1/(xlnx)dx=int(1/lnx)1/xdx=int1/udu#
This is a common integral:
#int1/udu=ln(absu)+C#
Since
#ln(absu)+C=ln(abslnx)+C#