What is the indefinite integral of #ln(1+x)#?
1 Answer
Aug 20, 2016
Explanation:
We have:
#I=intln(1+x)dx#
We will use integration by parts, which takes the form:
#intudv=uv-intvdu#
So, for
#{(u=ln(1+x)" "=>" "du=1/(1+x)dx),(dv=dx" "=>" "v=x):}#
Fitting this into the integration by parts formula:
#I=xln(1+x)-intx/(1+x)dx#
In integrating the second bit, you could long divide, but this is simpler:
#I=xln(1+x)-int(1+x-1)/(1+x)dx#
#I=xln(1+x)-int((1+x)/(1+x)-1/(1+x))dx#
#I=xln(1+x)-int(1-1/(1+x))dx#
#I=xln(1+x)-intdx+int1/(1+x)dx#
Both of these are fairly simple integrals:
#I=xln(1+x)-x+ln(1+x)+C#
Factoring
#I=(x+1)ln(1+x)-x+C#