What is the integral of #int ln x / x dx #?

1 Answer
Mar 30, 2018

#(1/2)(ln |x|)^2+c#

Explanation:

Integration by parts, with #u=ln x#, #v=ln x#, #(du)/(dx)=1/x#, #(dv)/(dx)=1/x#

#I=int(1/x)ln x dx#
#=(ln x)(ln x)-int(ln x).(1/x)dx#
#=(ln x)(ln x)-I#
So
#2I= ln(x)^2#
#I=(1/2)(ln x)^2+c#

Alternatively, by inspection, the integral is of the form #f'(x)f(x)# with #f(x)=ln(x)#, #f'(x)=1/x#. The integral of #f'(x)f(x)# is #(1/2)(f(x))^2#