What is the integral of #int sin^2(2x) dx#?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

70
May 13, 2017

We have that

#cos(4x)=cos^2(2x)-sin^2(2x)=>#
#cos(4x)=1-sin^2(2x)-sin^2(2x)=>#
#2sin^2(2x)=1-cos(4x)=>#
#sin^2(2x)=1/2*(1-cos(4x))#

Hence we have that

#int sin^2(2x)dx=int [1/2*(1-cos(4x))]dx=x/2-sin(4x)/8+c#

Footnote

We used the following trig identities

1) #cos(2*a)=cos^2a-sin^2a#

2) #cos^2a=1-sin^2a#

Was this helpful? Let the contributor know!
1500
Trending questions
Impact of this question
26543 views around the world
You can reuse this answer
Creative Commons License