What is the integral of #int (x^2)*e^(x^2) dx #? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Cesareo R. Sep 24, 2016 # 1/2xe^(x^2)-sqrt(pi)/4"erfi"(x)# Explanation: #d/dx(xe^(x^2))= 2x^2e^(x^2)+e^(x^2)# then #int x^2 e^(x^2)dx = 1/2(xe^(x^2)-int e^(x^2)dx)# but #"erfi"(x) = 2/sqrt(pi)int_0^x e^(x^2)dx# so #int x^2 e^(x^2)dx = 1/2xe^(x^2)-sqrt(pi)/4"erfi"(x)# NOTE: #"erfi"(x)# or error function is defined as #"erfi"(x) = 2/sqrtpi int_0^x e^(-xi^2) d xi# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 17819 views around the world You can reuse this answer Creative Commons License