What is the integral of #(x^3+x^2-5x+15)/((x^2+5)(x^2+2x+3))dx#?
2 Answers
Explanation:
# int \ (x^3+x^2-5x+15)/((x^2+5)(x^2+2x+3)) \ dx = (ln|x^2+2x+3|)/2 + 5 sqrt(2)/2 arctan((x+1)/sqrt(2)) - sqrt(5) arctan(x/sqrt(5)) + C#
Explanation:
We seek:
# I = int \ (x^3+x^2-5x+15)/((x^2+5)(x^2+2x+3)) \ dx#
We can decompose the integrand into partial fraction, which will be of the form:
# (x^3+x^2-5x+15)/((x^2+5)(x^2+2x+3)) -= (Ax+B)/(x^2+5) + (Cx+D)/(x^2+2x+3) #
# " " = ((Ax+B)(x^2+2x+3) + (Cx+D)(x^2+5))/((x^2+5)(x^2+2x+3)) #
Leading to an Identity:
# x^3+x^2-5x+15 -= (Ax+B)(x^2+2x+3) + (Cx+D)(x^2+5) #
Where
# Coef(x^3) : 1 = A + C #
# Coef(x^2) : 1 = 2A+B+D #
# Coef(x^1) : -5 = 3A+2B+5C #
# Coef(x^0) : 15 = 3B+5D #
If we solve these we get:
# A=0, B=-5, C=1, D=6 #
Thus we have:
# I = int \ (x+6)/(x^2+2x+3) - (5)/(x^2+5) \ dx#
# \ \ = 1/2 int \ (2x+12)/(x^2+2x+3) \ dx - int \ (5)/(x^2+5) \ dx#
# \ \ = 1/2 int \ ((2x+2) + 10)/(x^2+2x+3) \ dx - int \ (5)/(x^2+5) \ dx#
# \ \ = 1/2 int \ (2x+2)/(x^2+2x+3) \ dx + 5 \ int \ 1 /(x^2+2x+3) \ dx - 5 \ int \ (1)/(x^2+5) \ dx#
# \ \ = 1/2 I_1 + 5 I_2- 5I_3 + c # , say
Where we now consider each of the three integrals individually:
# I_1 = int \ (2x+2)/(x^2+2x+3) \ dx #
We can perform a substitution,
# I_1 = int \ 1/u \ du = ln |u| = ln|x^2+2x+3| #
# I_2= int \ 1/(x^2+2x+3) = int \ 1/((x+1)^2-1^2+3) = int \ 1/((x+1)^2+2)#
We can perform a substitution,
# I_2= int \ 1/((usqrt(2))^2+2) \ sqrt(2) \ du #
# \ \ \ = int \ 1/(2u^2+2) \ sqrt(2) \ du #
# \ \ \ = sqrt(2)/2 \ int \ 1/(u^2+1) \ du #
# \ \ \ = sqrt(2)/2 \ arctan(u) #
# \ \ \ = sqrt(2)/2 \ arctan((x+1)/sqrt(2)) #
Finally:
# I_3 int \ (1)/(x^2+5) \ dx#
We can perform a substitution,#usqrt(5)=x => sqrt(5)(du)/dx=1# so:
# I_3 = int \ (1)/((usqrt(5))^2+5) \ sqrt(5) \ du#
# \ \ \ = int \ (1)/(5u^2+5) \ sqrt(5) \ du #
# \ \ \ = sqrt(5)/5 int \ (1)/(u^2+1) \ du#
# \ \ \ = sqrt(5)/5 arctan(u)#
# \ \ \ = sqrt(5)/5 arctan(x/sqrt(5))#
Combining all three results:
# I = 1/2 (ln|x^2+2x+3|) + 5 (sqrt(2)/2 \ arctan((x+1)/sqrt(2))) - 5(sqrt(5)/5) arctan(x/sqrt(5)) #
# \ \ \ = (ln|x^2+2x+3|)/2 + 5 sqrt(2)/2 arctan((x+1)/sqrt(2)) - sqrt(5) arctan(x/sqrt(5)) + C#