What is #intsinh(x)cosh(x)dx#?
2 Answers
Mar 8, 2018
Explanation:
=
=
Mar 8, 2018
# int \ sinhx coshx \ dx = 1/4 \ cosh 2x + C #
Explanation:
We seek:
# I = int \ sinhx coshx \ dx #
Method 1
We can use the identity:
# sinh 2x -= 2sinhx coshx #
Which gives us:
# I = int \ 1/2 sinh 2x \ dx #
# \ \ = 1/2 \ (cosh 2x)/2 + C #
# \ \ = 1/4 \ cosh 2x + C #
Method 2
Using the definitions of
# I = int \ (e^x-e^(-x))/2 (e^x+e^(-x))/2 \ dx #
# \ \ = 1/4 \ int \ (e^x-e^(-x))(e^x+e^(-x)) \ dx #
# \ \ = 1/4 \ int \ e^(2x)-e^(-2x) \ dx #
# \ \ = 1/4 \ {e^(2x)/2+e^(-2x)/2} + C#
# \ \ = 1/4 \ (e^(2x)+e^(-2x))/2 + C#
# \ \ = 1/4 \ cosh2x + C#