What is #intsinh(x)cosh(x)dx#?

2 Answers
Mar 8, 2018

#1/4cos2h(x)+C#

Explanation:

#int sinh(x)*cosh(x)*dx#

=#1/2int sin2h(x)*dx#

=#1/4cos2h(x)+C#

Mar 8, 2018

# int \ sinhx coshx \ dx = 1/4 \ cosh 2x + C #

Explanation:

We seek:

# I = int \ sinhx coshx \ dx #

Method 1

We can use the identity:

# sinh 2x -= 2sinhx coshx #

Which gives us:

# I = int \ 1/2 sinh 2x \ dx #

# \ \ = 1/2 \ (cosh 2x)/2 + C #

# \ \ = 1/4 \ cosh 2x + C #

Method 2

Using the definitions of #sinhx# and #coshx#

# I = int \ (e^x-e^(-x))/2 (e^x+e^(-x))/2 \ dx #

# \ \ = 1/4 \ int \ (e^x-e^(-x))(e^x+e^(-x)) \ dx #

# \ \ = 1/4 \ int \ e^(2x)-e^(-2x) \ dx #

# \ \ = 1/4 \ {e^(2x)/2+e^(-2x)/2} + C#

# \ \ = 1/4 \ (e^(2x)+e^(-2x))/2 + C#

# \ \ = 1/4 \ cosh2x + C#