What is the LCM of #10w^2u^3# and #25w^6u^4y^7#?

1 Answer
Mar 6, 2017

LCM #= 50w^12u^12y^7 #

Explanation:

#color(blue)("Dealing with just the variables part")#

#color(green)(10w^2u^3)# and #color(maroon)(25w^6u^4y^7)#

Consider the #color(green)(u^3) and color(maroon)(u^4)#

#3xx4=12# so a possible target is #u^12#

Consider the #color(green)(w^2) and color(darkgoldenrod)(w^6)#

#2xx6=12# so a possible target is #w^12#

set the target as #w^12u^12y^7#

#color(magenta)(w^6u^4y^yxx)color(green)(w^2u^3) =w^12u^12y^7#

#color(magenta)(w^2u^3xx)color(maroon)(w^6u^4y^7) = w^12u^12y^7 #

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Dealing with just the number part")#

We have 10 and 25. As one of these values than the last digit of the LCM has to be 0

The first multiple of 25 that gives a last digit of 0 is: #2xx25=50#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Putting it all together")#

LCM #= 50w^12u^12y^7#