What is the limit of #(2^x -32)/(x-5 )# as x approaches #5#?
1 Answer
Jun 24, 2016
Explanation:
Use L'Hôpital's rule:
If functions
#lim_(x->c) f(x) = lim_(x->c) g(x) = 0# or#+-oo# #g'(x) != 0# for all#x in I "\" { c }# #lim_(x->c) (f'(x))/(g'(x))# exists
Then:
#lim_(x->c) f(x)/g(x) = lim_(x->c) (f'(x))/(g'(x))#
In our example, let
Note that:
#f'(x) = d/(dx) (2^x-32) = d/(dx) ((e^(ln(2)))^x - 32)#
#=d/(dx) (e^(ln(2)*x)-32) = ln(2) e^(ln(2)*x) = ln(2)*2^x#
#g'(x) = d/(dx) (x-5) = 1#
These are both differentiable in the whole of
#lim_(x->5) f(x) = lim_(x->5) (2^x-32) = 32 - 32 = 0# #lim_(x->5) g(x) = lim_(x->5) (x-5) = 5 - 5 = 0# #g'(x) = 1 != 0# for all#x in RR# #lim_(x->5) (f'(x))/(g'(x)) = (ln(2)*2^5)/1 = 32 ln(2)#
Hence:
#lim_(x-5) (f(x))/(g(x)) = lim_(x->5) (f'(x))/(g'(x)) = 32 ln(2) ~~ 22.1807#
graph{((2^x-32)/(x-5)-y)((x-5)^2+(y-32ln(2))^2-0.1)=0 [-32.34, 32.6, -3.77, 28.7]}