What is the limit of #(cos(3x)-cos(4x))/x^2# as x approaches #0#?

1 Answer
May 7, 2018

the answer
#lim_(xrarr0)[16cos(4x)-9co(3x)]/2=[16-9]/2=7/2#

Explanation:

show below

#lim_(xrarr0)(cos(3x)-cos(4x))/x^2#

Direct compensation product equal #0/0# so we will use l'hospital rule

#lim_(xrarra)f(x)/g(x)=0/0#

#lim_(xrarra)(f'(x))/(g'(x))#

#f(x)=cos(3x)-cos(4x)#

#f'(x)=4sin(4x)-3sin(3x)#

#g(x)=x^2#

#g'(x)=2x#

#lim_(xrarr0)[4sin(4x)-3sin(3x)]/(2x)#

since the Direct compensation product again equal #0/0# so we will derive it again

#f''(x)=16cos(4x)-9co(3x)#

#g''(x)=2#

#lim_(xrarr0)[16cos(4x)-9co(3x)]/2=[16-9]/2=7/2#