What is the limit of #((e^x)-x)^(2/x)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Nov 24, 2016 #e^2# Explanation: #(e^x-x)^(2/x)=e^2(1-x/e^x)^(2/x)# by the binomial expansion #(1-x/e^x)^(2/x)=1+2/x(-x/e^x)+2/x(2/x-1)(-x/e^x)^2 1/(2!)+cdots# #=1-2/e^x+(p_2(x))/e^(2x)+cdots+(-1)^n(p_n(x))/e^(nx)1/(n!)+cdots# where #p_n(x)# is a #n# degree polynomial. We know that #lim_(x->oo)(p_n(x))/e^x = 0# so #lim_(x->oo)(e^x-x)^(2/x) = e^2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1114 views around the world You can reuse this answer Creative Commons License