What is the perimeter of a triangle with corners at #(6 ,4 )#, #(8 ,2 )#, and #(4 ,7 )#?

1 Answer
Oct 28, 2016

Perimeter: #color(green)(12.8371)# (approx.)

Explanation:

Using the Pythagorean Theorem, find the length of the side between each pair of corners:
#abs((6,4):(8,2))#
#color(white)("XXX")=sqrt((8-6)^2+(2-4)^2)=2sqrt(2)#

#abs((8,2):(4,7))#
#color(white)("XXX")=sqrt((4-8)^2+(2-7)^2)=sqrt(41)#

#abs((4,7):(6,4))#
#color(white)("XXX")=sqrt((6-4)^2+(4-7)^2)=sqrt(13)#

The perimeter is the sum of the sides.

Perimeter #= 2sqrt(2)+sqrt(41)+sqrt(13)#
#color(white)("XXX")~~12.8371# (using a calculator)