What is the pOH of a 0.80M solution of acetic acid, HC2H3O2, with a dissociation constant for a weak acid of 1.8 x 10^-5 ?

2 Answers
May 12, 2018

Consider the equilibrium,

#CH_3COOH rightleftharpoons H^(+) + CH_3COO^(-)#

where,

#K_"a" = ([H^+][CH_3COO^-])/([CH_3COOH]) approx 1.8*10^-5#

Now, using an ICE table,

#CH_3COOH rightleftharpoons H^(+) + CH_3COO^(-)#
puu.sh

#K_"a" = x^2/(0.80-x) = 1.8*10^-5#

#=> x =[H^+] approx 3.79*10^-3#

Moreover, recall,

#K_"w" = [H^+][OH^-] = 1.0*10^-14#

Hence,

#"pOH" = -log(K_"w"/([H^+])) approx 11.58#

May 12, 2018

#pOH=11.58.....#

Explanation:

We investigate the equilibrium....

#"H"_3"CCO"_2"H(aq)" +"H"_2"O(l)" rightleftharpoons"H"_3"CCO"_2^(-) + "H"_3"O"^+#

....for #K_a=(["H"_3"CCO"_2^(-)]["H"_3"O"^+])/(["H"_3"CCO"_2"H(aq)"])=1.80xx10^-5#

Now if #x*mol*L^-1# acid dissociates...then...

#x^2/(0.80-x)=1.80xx10^-5#

And so....#x=sqrt(1.8xx10^-5xx(0.80-x))#

#~=sqrt(1.8xx10^-5xx(0.80))#...given the assumption that #(0.80-x)~=0.80#

#x_1=3.79xx10^-3*mol*L^-1#...and we plug this approx..back in..

#x_2=3.79xx10^-3*mol*L^-1#...and I prepared to accept this as the true value because the approximations have swiftly converged.

But #x=[H_3O^+]#...#pH=-log_10(3.79xx10^-3)=2.42#

And #pOH=14-2.42=??#