What is the polynomial function #f# of least degree that has rational coefficients, a leading coefficient of 2, and the zeros -4, 0, 2, 4?

1 Answer
Jul 3, 2018

#f(x)=2x^4-4x^3-32x^2+64x#

Explanation:

Given a function #p# and zeroes #x_1,x_2,...,x_n#, we can write #p(x)=a(x-x_1)(x-x_2)...(x-x_n)# where #a# is the leading coefficient or dilation factor. Knowing this, we can write the equation of #f# as #f(x)=2(x-(-4))(x-0)(x-2)(x-4)#.
#f(x)=2(x+4)(x)(x-2)(x-4)#
#f(x)=2x(x^2-16)(x-2)#
#f(x)=2x(x^3-2x^2-16x+32)#
#:.f(x)=2x^4-4x^3-32x^2+64x#