What is the quadratic formula of #v^2 + 14v + 33 = 0#?

1 Answer
Mar 2, 2018

see a solution process below;

Explanation:

The quadratic formula is given below;

#v = (-b +- sqrt(b^2 - 4ac))/(2a)#

Given;

#v^2 + 14v + 33 = 0#

#color(white)(xxxxx)darr#

#ax^2 + bx + c = 0#

Where;

#a = 1#

#b = +14#

#c = +33#

Substituting it into the formula;

#v = (-(+14) +- sqrt(14^2 - 4(1)(33)))/(2(1))#

#v = (-14 +- sqrt(196 - 132))/2#

#v = (-14 +- sqrt64)/2#

#v = (-14 +- 8)/2#

#v = (-14 + 8)/2 or v = (-14 - 8)/2#

#v = (-6)/2 or v = (-22)/2#

#v = -3 or v = -11#