What is the quotient of #(33b^4-51b^2+18)/(b^2-1)#?

1 Answer
Oct 5, 2017

#33b^2-18#

Explanation:

#"one way of dividing is to use the divisor as a factor in"#
#"the numerator"#

#"consider the numerator"#

#color(red)(33b^2)(b^2-1)color(magenta)(+33b^2)-51b^2+18#

#=color(red)(33b^2)(b^2-1)color(red)(-18)(b^2-1)color(magenta)(-18)+18#

#=color(red)(33b^2)(b^2-1)color(red)(-18)(b^2-1)+0#

#rArr(33b^4-51b^2+18)/(b^2-1)#

#=(cancel((b^2-1))(33b^2-18))/cancel((b^2-1))#

#=33b^2-18larrcolor(blue)" quotient"#