What is the range of #f(x) = - 4.7x + 1 # for the domain #{ - 1,3,5,8}#?

1 Answer
Nov 27, 2017

See a solution process below:

Explanation:

To find the Range of this function, we can substitute each value in the Domain for #color(red)(x)# and calculate the result:

For #x = -1#:

#f(color(red)(x)) = -4.7color(red)(x) + 1# becomes:

#f(color(red)(-1)) = (-4.7 xx color(red)(-1)) + 1#

#f(color(red)(-1)) = 4.7 + 1#

#f(color(red)(-1)) = 5.7#

For #x = 3#:

#f(color(red)(x)) = -4.7color(red)(x) + 1# becomes:

#f(color(red)(3)) = (-4.7 xx color(red)(3)) + 1#

#f(color(red)(3)) = -14.1 + 1#

#f(color(red)(3)) = -13.1#

For #x = 5#:

#f(color(red)(x)) = -4.7color(red)(x) + 1# becomes:

#f(color(red)(5)) = (-4.7 xx color(red)(5)) + 1#

#f(color(red)(5)) = -23.5 + 1#

#f(color(red)(5)) = -22.5#

For #x = 8#:

#f(color(red)(x)) = -4.7color(red)(x) + 1# becomes:

#f(color(red)(8)) = (-4.7 xx color(red)(8)) + 1#

#f(color(red)(8)) = -37.6 + 1#

#f(color(red)(8)) = -36.6#

The Range of #f(x)# is: #{3, -13.1, -22.5, -36.6}#