From the given:
#y=sec x+ sin (2x-(3pi)/8)# at #" "x=(11pi)/8#
Take the first derivative #y'#
#y'=sec x*tan x *(dx)/(dx)+ cos (2x-(3pi)/8)(2)(dx)/(dx)#
Using #" "x=(11pi)/8#
Take note: that by #color(Blue)("Half-Angle formulas")#, the following are obtained
#sec ((11pi)/8)=-sqrt(2+sqrt2)-sqrt(2-sqrt2)#
#tan ((11pi)/8)=sqrt2+1#
and
#2*cos (2x-(3pi)/8)=2*cos ((19pi)/8)#
#=2*(sqrt2/4)(sqrt(2+sqrt2)-sqrt(2-sqrt2))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
continuation
#y'=(-sqrt(2+sqrt2)-sqrt(2-sqrt2))(sqrt2+1)#
#+2*(sqrt2/4)(sqrt(2+sqrt2)-sqrt(2-sqrt2))#
#y'=-(sqrt2+1)sqrt(2+sqrt2)-(sqrt2+1)sqrt(2-sqrt2)#
#+(sqrt2)/2*sqrt(2+sqrt2)-sqrt2/2*sqrt(2-sqrt2)#
further simplification
#y'=(-1-sqrt2/2)sqrt(2+sqrt2)+((-3sqrt2)/2-1)sqrt(2-sqrt2)#
For the normal line: # m=(-1)/(y')#
#m=(-1)/((-1-sqrt2/2)sqrt(2+sqrt2)+((-3sqrt2)/2-1)sqrt(2-sqrt2))#
#m=1/((1+sqrt2/2)sqrt(2+sqrt2)+((3sqrt2)/2+1)sqrt(2-sqrt2))#
#m=0.180398700048733#
God bless....I hope the explanation is useful.